Variational Lossy Autoencoder

نویسندگان

  • Xi Chen
  • Diederik P. Kingma
  • Tim Salimans
  • Yan Duan
  • Prafulla Dhariwal
  • John Schulman
  • Ilya Sutskever
  • Pieter Abbeel
چکیده

Representation learning seeks to expose certain aspects of observed data in a learned representation that’s amenable to downstream tasks like classification. For instance, a good representation for 2D images might be one that describes only global structure and discards information about detailed texture. In this paper, we present a simple but principled method to learn such global representations by combining Variational Autoencoder (VAE) with neural autoregressive models such as RNN, MADE and PixelRNN/CNN. Our proposed VAE model allows us to have control over what the global latent code can learn and by designing the architecture accordingly, we can force the global latent code to discard irrelevant information such as texture in 2D images, and hence the VAE only “autoencodes” data in a lossy fashion. In addition, by leveraging autoregressive models as both prior distribution p(z) and decoding distribution p(x|z), we can greatly improve generative modeling performance of VAEs, achieving new state-of-the-art results on MNIST, OMNIGLOT and Caltech-101 Silhouettes density estimation tasks as well as competitive results on CIFAR10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Autoencoder based Anomaly Detection using Reconstruction Probability

We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...

متن کامل

Stick-breaking Variational Autoencoders

We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a sem...

متن کامل

Least Square Variational Bayesian Autoencoder with Regularization

In recent years Variation Autoencoders have become one of the most popular unsupervised learning of complicated distributions. Variational Autoencoder (VAE) provides more efficient reconstructive performance over a traditional autoencoder. Variational auto enocders make better approximaiton than MCMC. The VAE defines a generative process in terms of ancestral sampling through a cascade of hidde...

متن کامل

Time Series Compression Based on Adaptive Piecewise Recurrent Autoencoder

Time series account for a large proportion of the data stored in financial, medical and scientific databases. The efficient storage of time series is important in practical applications. In this paper, we propose a novel lossy compression scheme for time series. The encoder and decoder are both composed by recurrent neural networks (RNN) such as long short-term memory (LSTM). There is an autoen...

متن کامل

Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things

In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.02731  شماره 

صفحات  -

تاریخ انتشار 2016